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Capitolo 1

Introduzione

1.1 Scopo del progetto
Nell’ambito della robotica mobile è spesso di interesse far seguire ad un robot una traiettoria
desiderata. Quest’azione prende il nome di trajectory tracking. Si differenzia dall’inseguimento di
un percorso (path following) in quanto una traiettoria implica, oltre l’inseguimento del percorso,
il rispetto di una legge oraria con cui questo deve avvenire. Tuttavia, in un caso reale, non è
detto che tutte le traiettorie che si desidera seguire possano essere effettivamente seguite con
successo: alcune traiettorie potrebbero richiedere sforzi di controllo non fisicamente realizzabili
dagli attuatori utilizzati sul robot, facendoli così entrare in regime di saturazione. La saturazione
è un regime del sistema fortemente non lineare e non linearizzabile. Far operare attuatori in
regime di saturazione, soprattutto per tempi prolungati, ne può causare il deterioramento e la
rottura ed è quindi desiderabile evitarla.

In questa tesi viene affrontato il problema di eseguire trajectory tracking con robot di tipo
uniciclo e differential drive in presenza di limiti di saturazione sugli attuatori. Come detto, i
limiti di saturazione limitano le traiettorie fisicamente realizzabili dal robot. L’obiettivo è la
realizzazione di un controllore che applichi un’azione correttiva a quella di tracking al fine di
assicurarsi che venga richiesto uno sforzo di controllo che rientri nei limiti di saturazione. Lo
studio viene fatto in assenza di ostacoli sul percorso da seguire.

Il controllore che realizza il tracking viene ottenuto tramite linearizzazione input-output del
sistema. La formulazione di questo controllore viene esposta nel capitolo 2. Non è garantito che
questo controllore generi sforzi di controllo che non saturino gli attuatori. In caso accadesse,
il tracking della traiettoria potrebbe essere errato e non prevedibile. In questo progetto, per
evitare che gli attuatori entrino in regime di saturazione viene aggiunta un’azione correttiva,
ottenuta con un controllore basato su MPC (MPC-based), che modifica l’azione di tracking per
imporre che l’azione compiuta dagli attuatori, somma di quella correttiva e quella di tracking,
rientri nei limiti di saturazione.

Il controllore MPC-based minimizza una funzione obiettivo desiderata all’interno di un
dominio limitato da determinati vincoli, prevedendo il comportamento del sistema in istanti di
tempo che si susseguono all’interno di un orizzonte finito. Il controllore è quindi intrinsecamente
a tempo discreto. L’azione correttiva, per costruzione, previene il tracking ideale e quindi la
funzione obiettivo dovrà essere scelta in modo da minimizzare l’errore di tracking causato dalla
correzione. La formulazione esatta del controllore MPC viene esposta nel capitolo 3.
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Figura 1.1 Il robot uniciclo [1]

Verrà analizzato il comportamento del sistema sotto l’azione di tre controllori diversi: il
primo senza azione correttiva; il secondo con azione correttiva e un orizzonte di predizione di
un singolo step; l’ultimo con azione correttiva e un orizzonte di predizione pari a quindici step
(1,5 secondi). In tutti e tre i casi il tracking viene realizzato da un controllore ottenuto per
linearizzazione input-output come specificato nel capitolo 2. Il comportamento del robot sotto
l’azione dei tre controllori è stato simulato in MATLAB eseguendo prove su una varietà di
traiettorie e in una varietà di condizioni. Sono di particolare interesse le traiettorie che possono
portare il sistema in saturazione, ad esempio quelle che richiedono velocità elevate, superiori a
quelle realizzabili dagli attuatori, le traiettorie che presentano curvatura molto strette o errori
iniziali elevati.

1.2 Robot uniciclo
L’uniciclo è un robot che presenta una sola ruota, attuata e orientabile, in grado di ruotare
attorno all’asse verticale che passa per il suo centro. Nella pratica un tale robot ha bisogno di un
controllore per il mantenimento dell’equilibrio. Il modello dell’uniciclo ignora questa necessità e
assume che il robot possa rimanga sempre in equilibrio senza bisogno di un controllore apposito.
Per questo è considerato un modello puramente teorico. Sotto queste condizioni, l’uniciclo
può sia traslare avanti e indietro lungo l’asse definito sagittale, che cambiare orientamento
ruotando attorno all’asse perpendicolare al piano e passante per il centro della ruota. Nonostante
l’uniciclo ideale non sia praticamente realizzabile, i modelli cinematici di altri robot praticamente
realizzabili possono essere ricondotti all’uniciclo tramite un cambio di input. Nel capitolo 4 viene
affrontato il caso del robot differential drive.

Inoltre la ruota è sottoposta ad un vincolo di puro rotolamento: non essendo omnidirezionale
essa non può traslare perpendicolarmente all’asse sagittale senza slittare. Per questo, l’asse
normale a quello sagittale viene definito anche zero-motion line. Dell’uniciclo viene definito
un modello cinematico, ovvero in cui compaiono solo le velocità generalizzate (derivate prime
delle coordinate generalizzate). Questo è possibile perché nell’ambito della robotica mobile gli
attuatori spesso hanno dei controllori PID di basso livello che prendono come riferimento una
velocità e gestiscono internamente la dinamica dell’attuatore.

Quello di puro rotolamente è un vincolo cinematico non-olonomico. Sotto di esso si deve
avere

(
sin θ − cos θ

)(ẋ
ẏ

)
= nT

(
ẋ
ẏ

)
= 0 (1.1)
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Figura 1.2 La zero-motion line del robot uniciclo [1]

Dove
(
sin θ − cos θ

)
è la zero-motion line: l’asse normale a quello sagittale. Imporre

l’uguaglianza a zero indica che i due vettori devono rimanere perpendicolari fra loro e che quindi
il movimento può avvenire solo lungo l’asse sagittale e non lungo quello normale, per il quale la
ruota dovrebbe slittare.

Per ottenere un modello cinematico a partire dal vincolo, lo si riscrive in maniera tale da far
comparire tutte le coordinate generalizzate. Come indicato in figura 1.1, per l’uniciclo queste
sono x, y e θ. L’equazione (1.1) viene riscritta come

(
sin θ − cos θ 0

)ẋ
ẏ

θ̇

 = AT (q)

ẋ
ẏ

θ̇

 = 0 (1.2)

Tutte le velocità ammissibili appartengono quindi a ker(AT (q)), per cui una base valida è

{cosθ
sinθ

0

 ,

0
0
1

}

Da cui si ottiene il modello cinematico dell’uniciclo
ẋ = v cos θ

ẏ = v sin θ

θ̇ = ω

(1.3)

Il nome dei parametri è stato scelto per evidenziare il loro ruolo: ω è la velocità angolare con
cui il robot ruota attorno al all’asse passante per il proprio centro, mentre v =

√
ẋ2 + ẏ2 è la

velocità lineare con cui il robot procede.
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Capitolo 2

Trajectory tracking con uniciclo con
linearizzazione input-output

Si consideri un sistema privo di evoluzione libera (driftless) del tipo{
ẋ = G(x) u

y = h(x)

allora ẏ = ∂h

∂x
ẋ = ∂h

∂x
G(x) u = T (x) u. Nel caso la matrice di disaccoppiamento T (x)

sia invertibile si può scegliere un nuovo input v e impostare u = T −1(x) v e quindi ẏ =
T (x)T −1(x) v = v stabilendo così una mappa lineare fra gli input v e le derivate temporali degli
output.

Il sistema si comporta dunque come un integratore il cui ingresso è v = ẏ e la cui uscita è y.
Un integratore può essere stabilizzato con feedback proporzionale, a cui viene aggiunto un

termine di feedforward per poter seguire traiettorie arbitrarie. Si definisce l’errore come la
differenza fra la traiettoria desiderata e quella attuale

e = yd − y

la cui dinamica è
ė = ẏd − ẏ = ẏd − v

Scegliendo v per imporre il termine di feedback proporzionale e quello di feedforward

v = ẏd + Ke (2.1)

la dinamica dell’errore diventa
ė = −Ke

La stabilità asintotica è dunque garantita fintanto che gli autovalori di K appartengono al
semipiano positivo. Ne risulta che l’ingresso del sistema è

u = T −1(x)(ẏd + Ke)

È ragionevole inoltre scegliere K diagonale per evitare fenomeni di ri-accoppiamento.

Nel caso dell’uniciclo è di interesse tracciare la posizione cartesiana, quindi si sceglie come
uscita il vettore

(
y1 y2

)T
=
(
x y

)T
, le cui derivate sono

(
ẏ1 ẏ2

)T
=
(
ẋ ẏ

)T
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Figura 2.1 Il sistema si comporta come un integratore [1]

Da, (1.3), questo rende la matrice di disaccoppiamento T (x) =
(

cos θ 0
sin θ 0

)
: singolare e

quindi non invertibile. Per ovviare a questo problema si esegue il tracking non del centro esatto
del robot, ma di un punto B a distanza b da esso, rendendo le uscite desiderate(

y1
y2

)
=
(

x + b cos θ
y + b sin θ

)
(2.2)

per cui (
ẏ1
ẏ2

)
=
(

ẋ − b sin θθ̇

ẏ + b cos θθ̇

)
=
(

v cos θ − b sin θω
v sin θ + b cos θω

)
(2.3)

e quindi la matrice di disaccoppiamento diventa

T (θ) =
(

cos θ −b sin θ
sin θ b cos θ

)
(2.4)

la cui inversa è

T −1(θ) =
(

cos θ sin θ
− sin θ/b cos θ/b

)
Scegliendo inoltre gli ingressi come (2.1):

utrack =
(

u1
u2

)
=
(

ẋref + kx(xref − xB)
ẏref + ky(yref − yB)

)
(2.5)

Gli input del sistema uniciclo sono (
v
ω

)
= T −1(θ) utrack (2.6)

da cui risulta infine che il sistema linearizzato input-output è
ẋ = u1 = ẋref + kx(xref − xP )
ẏ = u2 = ẏref + ky(yref − yP )

θ̇ = u2 cos θ − u1 sin θ

b

(2.7)

Il cui schema di controllo è raffigurato in figura 2.2.
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Figura 2.2 Schema di controllo per trajectory tracking con uniciclo con linearizzazione input-output
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Capitolo 3

Azione correttiva con controllore
MPC-based

Lo scopo dell’azione correttiva ucorr è modificare l’azione di tracking in maniera tale che la loro
somma non superi i limiti di saturazione. Nello schema di controllo utilizzato, l’azione correttiva
viene aggiunta a quella di tracking [2] come in figura 3.1.

In questo progetto, l’azione correttiva è realizzata con un controllore MPC-based. Un
controllore MPC(Model Predictive Control)-based utilizza il modello matematico del sistema per
prevederne l’evoluzione futura, ad istanti discreti di un orizzonte di predizione. L’evoluzione
predetta, e la sequenza di input che la realizzano, devono minimizzare una funzione di costo.
Lo stato e gli ingressi del sistema devono inoltre rispettare dei vincoli. Questo imposta un
problema di ottimizzazione le cui variabili di decisioni sono la sequenza di input da applicare in
ogni istante dell’orizzonte. Generalmente, l’evoluzione dello stato del sistema è calcolata on-line
durante la risoluzione del problema di ottimizzazione. Della soluzione, solo l’ingresso relativo al
primo istante viene utilizzato come ingresso del sistema.

La forma generale di un controllore MPC è

u∗ = arg min
C−1∑
i=0

L(xi, ui) + E(xN )

t.c. x0 = x̂0

xi+1 = F (xi, ui), i = 0, · · · , C − 1
G(xi, ui) ≤ 0, i = 0, · · · , C − 1

In questa scrittura, il secondo vincolo esprime come il controllore predice l’evoluzione del
sistema; il primo vincolo indica la condizione iniziale; il terzo vincolo invece esprime uno o più
vincoli generici su stato ed ingressi.

Funzione di costo
C∑

i=0
(ucorr

i )T ucorr
i (3.2)

La funzione di costo scelta è (3.2): la somma delle norme quadre della correzzione effettuata
ad ogni istante nell’orizzonte. L’obiettivo è quindi la minimizzazione della correzione stessa,
dato che, per costruzione, questa perturba il tracking esatto della traiettoria [2]. La correzione
non viene dunque applicata se non ve ne è bisogno, ovvero se nessun vincolo è attivo.
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+

+

Figura 3.1 Schema di controllo con azione correttiva

Vincoli I vincoli di interesse sono quelli relativi alla saturazione degli attuatori, ovvero∣∣∣∣∣
(

v
ω

) ∣∣∣∣∣ ≤
(

vmax

ωmax

)
oppure −

(
vmax

ωmax

)
≤
(

v
ω

)
≤
(

vmax

ωmax

)
(3.3)

Il vincolo così definisce una regione ammissibile per gli input v, ω a forma di rettangolo. Per
questo motivo questo tipo di vincoli assume anche il nome di box constraints (figura 3.2). Per
come sono stati definiti gli input dell’uniciclo in (2.6) e tenendo in considerazione l’aggiunta
dell’azione correttiva come mostrato in figura 3.1, il vincolo può essere riscritto come

−
(

vmax

ωmax

)
≤ T −1(θ) utrack + ucorr ≤

(
vmax

ωmax

)
(3.4)

Per quanto riguarda MPC, ne risulta che ad ogni istante dell’orizzonte di predizione, a partire
da tk, debbano valere i limiti inferiori e superiori

ucorr
i ≤

(
vmax

ωmax

)
− T −1

i (θ)utrack
i

ucorr
i ≥ −

(
vmax

ωmax

)
− T −1

i (θ)utrack
i

per i = 0, ..., C (3.5)

Implementazione La struttura del vincolo (3.5) evidenza la dipendenza di ogni vincolo da
T −1

k+i(θ) e utrack
k+i , le quali possono essere calcolate a partire dallo stato attuale del sistema qk+i.

Tuttavia quest’ultimo dipende dalla correzione effettuate all’istante precedente ucorr
k+i−1, che è una

variabile di decisione. Il fatto che T −1
k+i(θ) dipende da qk+i attraverso funzioni trigonometriche

rende la dipendenza non lineare e il problema difficile da costruire e risolvere.
In questo progetto l’evoluzione del sistema viene invece calcolata offline, prima della risoluzione

del problema di ottimizzazione, integrando numericamente il sistema secondo Runge-Kutta al
secondo ordine e usando i valori di ucorr come provenienti dall’orizzonte di predizione calcolato
dall’esecuzione di MPC all’istante precedente tk−1. Di questi, il primo elemento deve essere
scartato, in quanto si riferisce all’istante passato tk−1, e si deve predisporre un nuovo elemento
alla fine dell’orizzonte, che può essere impostato a zero per convenienza. Nel fare questo, si sta
di fatto facendo "slittare" l’orizzonte in avanti nel tempo di un istante. Calcolare l’evoluzione del
sistema in questo modo costituisce di fatti un passo di linearizzazione.

La scelta della funzione di costo rende il problema di ottimizzazione un problema di program-
mazione quadratica (QP - Quadratic Programming). MATLAB fornisce il risolutore quadprog,
che prende in input un problema nella forma
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Figura 3.2 Box constraints per input del robot uniciclo

min (1
2xT Hx + fT x) con i vincoli


Ax ≤ b

Aeqx = beq

lb ≤ x ≤ ub

(3.6)

L’incognita x deve includere ogni vettore ucorr
i , perciò assume la forma di un vettore di

vettori:

x =
(
ucorr

i ucorr
i+1 · · · ucorr

i+C

)
=
(
vcorr

i ωcorr
i vcorr

i+1 ωcorr
i+1 · · · vcorr

i+C ωcorr
i+C

)T
(3.7)

La cui dimensione risulta essere 1 × 2C. È vettore colonna, di cui ogni indice dispari è un
ingresso vcorr

i , mentre ogni indice pari è un input ωcorr
i . Le altre matrici assumono le opportune

dimensioni in accordo con la costruzione del vettore x: H è la matrice identità di dimensione
2C (moltiplicata per 2 per tener conto del fattore di 1/2) e fT è il vettore nullo di dimensione
2C × 1, essendo assenti termini lineari.

I vincoli vengono imposti usando gli argomenti di limiti inferiori e superiori come in (3.3) dove,
T −1

i (θ) e utrack
i sono ottenute per integrazioni successive del sistema secondo Runge-Kutta al

secondo ordine, utilizzando le ucorr
i ottenute dall’orizzonte prodotto dalla precedente iterazione

di MPC.

Da questo risulta un algoritmo per il calcolo del termine correttivo in un dato istante ti:

1. Si calcola e memorizza T −1
i (θ).

2. Si calcola e memorizza utrack
i .

3. Si calcola l’input per il sistema T −1
i (θ)utrack

i + ucorr
i . ucorr

i viene dall’orizzonte di predizione
della precedente esecuzione di MPC.

4. Si integrano secondo Eulero/Runge-Kutta le equazioni del sistema.

5. Si ottiene lo stato predetto all’istante ti+1.

6. Si itera il processo da 1 a 5 fino alla fine dell’orizzonte (l’istante ti+C).

7. Si costruisce il QP con le T −1
i (θ)e utrack

i memorizzate, usando le ucorr
i come variabili di

decisioni.

8. Si risolve il QP, ottenendo una sequenza di ucorr
i . La prima viene applicata all’istante

corrente, le restanti vengono usati al passo 3 della successiva esecuzione di MPC.
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3.1 Tracking e correzione
In questa sezione sono riportati dei risultati di trajectory tracking con robot uniciclo con applicata
la correzione MPC-based. In tabella sono riportati i parametri della simulazione. I controllori
sono implementati a tempo discreto, tuttavia il robot è un sistema a tempo continuo e la sua
evoluzione viene simulata usando il risolutore ode45, simulando un organo di ritenuta di ordine
zero fra il controllore e il sistema. Il controllore MPC è stato simulato in due varianti: con C = 1
(1-step) e C = 15 (multistep).

Grandezza Parametro Valore Unità di misura
Limite di
saturazione su v

vmax 0.5 m/s

Limite di
saturazione su ω

ωmax 0.5 rad/s

Matrice dei
guadagni
proporzionali

K
(

1 0
0 1

)
-

Distanza fra il
punto tracciato e il
centro del robot

b 0.12 m

Tempo di
campionamento
del controllore

Tc 0.1 s

Timestep per
MPC

dt 0.1 s

Lunghezza
orizzonte di
predizione per
MPC multistep

C 15 dt

Durata delle
simulazioni

Tfin 30 s
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3.1.1 Retta con errore iniziale

Tracking di una retta di equazione
{

xref = 0.2t

yref = 0
con q0 =

(
0 0.5 0

)T

L’errore iniziale fa saturare ωtrack. Quando ωtrack è in saturazione viene correttamente
generata una correzione che fa rientrare ω nei limiti di saturazione. I profili degli ingressi generati
dai tre controllori sono uguali, quindi la traiettoria seguita dal robot è la stessa in tutti e tre i
casi.
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(a) Traiettoria del robot

(b) Input solo tracking (c) Input tracking + MPC 1-step (d) Input tracking + MPC multistep

Figura 3.3 Simulazione 1: tracking di una retta con errore iniziale
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3.1.2 Cerchio

Tracking di un archo di cerchio di equazione
{

xref = 2.55 cos(0.05t)
yref = 2.55 cos(0.05t)

con q0 =
(
0 0 0

)T

Il comportamento è simile a quello della retta con errore iniziale, ma in questo caso sia vtrack

che ωtrack sono in saturazione a causa dell’errore iniziale. Viene generata una correzione che
fa rientrare v e ω totali nei limiti di saturazione. Anche in questo caso i profili degli ingressi
generati dai tre controllori sono uguali, quindi la traiettoria seguita dal robot è la stessa in tutti
e tre i casi. L’effetto di chattering all’inizio è invece dovuto al tempo di campionamento troppo
alto. Abbassarlo a 0.05s elimina il fenomeno senza impattare notevole sui tempi di simulazione.
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(a) Traiettoria del robot

(b) Input solo tracking (c) Input tracking + MPC 1-step (d) Input tracking + MPC multistep

Figura 3.4 Simulazione 2: tracking di un arco di cerchio con errore iniziale



3.1 Tracking e correzione 15

3.1.3 Quadrato

Tracking di un quadrato di lato 2m con q0 =
(
1 0 −π/2

)
Il comportamento della correzione è analogo a quello del cerchio e della retta con errore

iniziale. In questo caso però vtrack non satura mai e ωtrack satura in corrispondenza delle curve
ad angolo retto. Viene correttamente generata una correzione che mantiene ω nei limiti di
saturazione. Anche in questo caso i profili degli ingressi generati dai tre controllori sono uguali e
la traiettoria seguita dal robot è la stessa in tutti e tre i casi.

3.1.4 Differenze fra i tre controllori

In tutti i casi si osservano differenze praticamente ignorabili fra gli ingressi prodotti dal controllore
con solo tracking (senza correzione) e quelli prodotti dai due controllori con correzione MPC-
based. Nei casi in cui la traiettoria non necessita di correzioni, le differenze sono in ordini di
grandezza minori di 10−10m e sono imputabili ad errori di precisione nella rappresentazione dei
numeri a virgola mobile. Nei casi in cui la traiettoria necessiti di correzioni, si osserva che la
correzione ottima trovata sia da MPC 1-step che MPC multistep è quella che fa comportare
la correzione come un organo di saturazione. Questo è conseguenza dalla formulazione della
funzione di costo e del fatto che la correzione desidera è la minima possibile. La correzione
minima è, infatti, quella che si comporta come un saturatore. Dunque gli ingressi corretti a
monte della saturazione sono uguali a quelli non corretti a valle della saturazione.

Anche le differenze fra le correzioni applicate da MPC 1-step e MPC multistep sono pressoché
ignorabili. Questo deriva non solo dalla formulazione della funzione di costo ma anche dalla
formulazione dei vincoli. Come conseguenza del predirre l’evoluzione del sistema offline, prima
della risoluzione del QP, ogni variabile di decisione è indipendente dalle altre. Ne risulta che, ad
un dato istante tk, MPC 1-step e MPC multistep producono la stessa correzione. Le differenze,
che sono nell’ordine di 10−8m/s (per v) e 10−8rad/s (per ω) , sono imputabili all’accumulo
di errori di integrazione in MPC multistep nella fase di predizione. Questi fanno predirre
alle esecuzioni successive dell’algoritmo una traiettoria leggermente sbagliata e l’errore viene
recuperato ad ogni istante dalla nuova correzione.
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(a) Traiettoria del robot

(b) Input solo tracking (c) Input tracking + MPC 1-step (d) Input tracking + MPC multistep

Figura 3.5 Simulazione 3: tracking di una quadrato di lato 2m
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Capitolo 4

Estensione a differential drive

Il modello del robot uniciclo è stato descritto nel capitolo 1 come puramente teorico. Tuttavia,
modelli più complessi di robot praticamente realizzabili sono riducibili ad un uniciclo "equivalente"
tramite un cambio di input. In questo capitolo viene presentato il caso del robot differential
drive. Esso presenta due ruote poste sullo stesso asse, fisse ed attuate indipendentemente, ed
un terzo ruotino libero (caster wheel) per assicurare equilibrio senza bisogno di un controllore
apposito. Il ruotino libero non è attuato ma per costruzione si orienta automaticamente nella
direzione di movimento del robot. Componendo opportunamente le velocità di rotazione del
motore destro e quello sinistro, rispettivamente ωr e ωl, si impone la traiettoria al robot.

La posizione dell’uniciclo equivalente è il punto medio fra la posizione delle due ruote
x = xr + xl

2
y = yr + yl

2
Ogni ruota contribuisce alla velocità lungo ogni asse cartesiano, dipendentemente dall’orien-

tamento 
ẋ = ẋr + ẋl

2 = vr + vl

2 cos θ

ẏ = ẏr + ẏl

2 = vr + vl

2 sin θ

Le velocità lineari imposte da ogni motore sono direttamente proporzionali alle velocità
angolari dell’asse del motore stesso attraverso il raggio della ruota

vr = r · ωr,vl = r · ωl =⇒


ẋ = r(ωr + ωl)

2 cos θ

ẏ = r(ωr + ωl)
2 sin θ

Ricordando che nello schema dell’uniciclo vale v =
√

ẋ2 + ẏ2 risulta

v = r(wr + wl)
2 (4.1)

La rotazione avviene attorno all’asse perpendicolare al piano e passante il punto medio fra le
ruote. La velocità angolare di rotazione dell’uniciclo equivalente è la differenza delle velocità
angolari imposte da ogni motore indipendentemente. Dato che i motori impongono rotazioni in
versi opposti attorno allo stesso asse le due vanno sottratte.
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(a) Lo schema di un robot differen-
tial drive nel piano

(b) Il Pioneer P3DX, un robot diffe-
rential drive usato a livello accade-
mico

Figura 4.1

ω = vr

d
− vl

d
= r(ωr − ωl)

d
(4.2)

La matrice
W =

(
r/2 r/2
r/d −r/d

)
(4.3)

esprime il cambio di input dagli input del differential drive agli input dell’uniciclo.(
v
ω

)
= W

(
ωr

ωl

)
(4.4)

Da (1.3) e (4.4) si ottiene il modello cinematico del robot differential drive(
ẋ
ẏ

)
= T (θ)

(
v
ω

)
= T (θ) W

(
ωr

ωl

)
(4.5)

Per applicare lo schema di controllo in figura 2.2 la matrice T (θ) deve essere presa non
singolare come in (2.2) e quindi fare il tracking di un punto spostato rispetto al centro del robot.
Gli input per il differential drive risultano essere(

ωr

ωl

)
= W −1T −1(θ)

(
u1
u2

)
(4.6)

Per quanto riguarda il controllore MPC, è sufficiente riscrivere i vincoli in (3.3) per utilizzare
l’inversa della matrice di disaccoppiamento appropriata per il robot differential drive W −1T −1(θ).

I box constraints in questo caso vengono applicati agli input del robot differential drive(
ωr ωl

)T
e non a quelli dell’uniciclo

(
v ω

)T
. La regione ammissibile per gli input del robot

differential drive rimane un quadrato, mentre a causa del cambio di input la regione ammissibile
per gli input dell’uniciclo equivalente diventa un rombo.

In questa sezione sono riportati dei risultati di trajectory tracking con robot differential drive
con applicata la correzione MPC-based. In tabella sono riportati i parametri della simulazione.
La metodologia di simulazione e l’implementazione dei controllori è la stessa che in sezione 3.1
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Figura 4.2 Box constraints per robot differential drive

Grandezza Parametro Valore Unità di misura
Limite di
saturazione su ωr

ωmax
l 2.85 rad/s

Limite di
saturazione su ωl

ωmax
l 2.85 rad/s

Matrice dei
guadagni
proporzionali

K
(

1 0
0 1

)
-

Distanza fra il
punto tracciato e il
centro del robot

b 0.12 m/s

Raggio delle ruote r 0.1 m/s
Distanza fra le
ruote

d 0.15 m/s

Tempo di
campionamento
del controllore

Tc 0.1 s

Timestep per
MPC

dt 0.1 s

Lunghezza
orizzonte di
predizione per
MPC multistep

C 15 dt

Durata delle
simulazioni

Tfin 30 s
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4.0.1 Retta troppo veloce

Tracking di una retta di equazione
{

xref = 0.8t

yref = 0
con condizioni iniziali q0 =

(
0 0 0

)T

La traiettoria è troppo veloce da inseguire ed entrambi gli attuatori saturano instantaneamente
e rimangono in saturazione. Questo fa aumentare costantemente l’errore e, di conseguenza,
l’input di tracking. Viene generata una correzione che non fa saturare gli attuatori, ma anche
questa aumenta costantemente come conseguenza del comportamento dell’input di tracking. I
profili degli ingressi generati dai tre controllori sono uguali, quindi la traiettoria seguita dal
robot è la stessa in tutti e tre i casi.
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(a) Traiettoria del robot

(b) Input solo tracking (c) Input tracking + MPC 1-step (d) Input tracking + MPC multistep

Figura 4.3 Simulazione 4: tracking di una retta troppo veloce con differential drive
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4.0.2 Retta con errore iniziale

Tracking di una retta di equazione
{

xref = 0.2t

yref = 0
con condizioni iniziali q0 =

(
0 0.5 0

)T

L’errore iniziale fa saturare entrambi gli attuatori ma poi viene recuperato. Con i controllori
MPC-based viene correttamente generata una correzione che non fa saturare gli attuatori. Anche
in questo caso i profili degli ingressi generati dai tre controllori sono uguali e la traiettoria seguita
dal robot è la stessa in tutti e tre i casi.
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(a) Traiettoria del robot

(b) Input solo tracking (c) Input tracking + MPC 1-step (d) Input tracking + MPC multistep

Figura 4.4 Simulazione 5: tracking di una retta con errore iniziale con differential drive
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4.0.3 Cerchio

Tracking di un cerchio di equazione
{

xref = 2.55 cos(0.05t)
yref = 2.55 sin(0.05t)

con condizioni iniziali q0 =(
0 0 0

)T

Analogamente alla retta con errore iniziale, l’errore fa saturare entrambi gli attuatori ma poi
viene recuperato. Con i controllori MPC-based viene correttamente generata una correzione
che non fa saturare gli attuatori. Anche in questo caso i profili degli ingressi generati dai tre
controllori sono uguali, quindi la traiettoria seguita dal robot è la stessa in tutti e tre i casi.
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(a) Traiettoria del robot

(b) Input solo tracking (c) Input tracking + MPC 1-step (d) Input tracking + MPC multistep

Figura 4.5 Simulazione 6: tracking di un arco di cerchio con errore iniziale con differential drive



26

4.0.4 Quadrato

Tracking di un quadrato di lato 2m e centro l’origine, con velocità 0.18m/s e condizione iniziale
q0 =

(
1 0 −π/2

)
Analogamente a quanto succede per l’uniciclo (sezione 3.1.3), le curve ad angolo retto sono

troppo strette per il robot e fanno saturare gli attuatori. I due controllori MPC generano
correttamente una correzione che non fa saturare gli attuatori. Anche in questo caso i profili
degli ingressi generati dai tre controllori sono uguali, quindi la traiettoria seguita dal robot è la
stessa in tutti e tre i casi.
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(a) Traiettoria del robot

(b) Input solo tracking (c) Input tracking + MPC 1-step (d) Input tracking + MPC multistep

Figura 4.6 Simulazione 7: tracking di un quadrato di lato 2m con differential drive
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4.0.5 Differenze fra i tre controllori e differenze rispetto all’uniciclo

Il comportamento della correzione è lo stesso che per il robot uniciclo, come spiegato in sezione
3.1.4: i tre controllori generano profili di input uguali. Per come è stato definito il QP, la
correzione minima (e quindi ottima) è quella che fa comportare la correzione come un saturatore.
Ne risulta, di nuovo, che gli input corretti a monte della saturazione siano uguali a quelli
non corretti a valle della stessa. Le differenze sono imputabili a errori di precisione nella
rappresentazione floating point e all’accumulo di errori di integrazione.

Le differenze che si osservano nelle traiettoria tracciate dal robot uniciclo e dal robot
differential drive sono conseguenza della scelta dei parametri. In particolare, il robot differential
drive presenta una velocità lineare leggermente minore e una velocità angolare leggermente
maggiore rispetto all’uniciclo.
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Capitolo 5

Funzioni di costo alternative

Nei precedenti capitoli si è visto come la struttura del problema porta la correzione MPC-based
a comportarsi come la saturazione. In questo capitolo si esplora il comportamento di funzioni di
costo diverse da quella descritta in (3.2) e ne si studia l’effetto sul tracking della traiettoria. Si
può pensare, ad esempio, a minimizzare solo una fra (vcorr)2e (ωcorr)2.

Per la struttura definita in figura 3.1, nel caso del robot uniciclo è impossibile minimizzare
solo una fra (vcorr)2e (ωcorr)2, poichè una delle due variabili di decisione scomparirebbe dalla
funzione di costo. Nel caso del robot differential drive invece è possibile definire v e ω (e
quindi le relative correzioni) in termini di ωr e ωl attraverso il cambio di input mostrato in
(4.4). Si vede facilmente che minimizzare (vcorr)2porta l’Hessiano (matrice H in (3.6)) a essere
singolare. Lo stesso accade per (ωcorr)2. Questo rende necessario utilizzare un algoritmo
diverso rispetto a interior-point-convex, l’algoritmo utilizzato di predefinito da quadprog.
L’algoritmo active-set riesce a risolvere il problema correttamente.

5.0.1 Cerchio, differential drive, minimizzando correzione su v

Da (4.4) si ottiene che

v2 = r2

2 (ω2
r + ω2

l + 2ωrωl)

Basta quindi impostare

H = 2r2

4

(
1 1
1 1

)
= r2

2

(
1 1
1 1

)
(5.1)

per minimizzare solo la velocità lineare del robot. Per MPC multistep H è una matrice diagonale
a blocchi di grandezza C, con ogni blocco come (5.1). Il 2 serve per tener conto del fattore
1/2 nella formulazione di quadprog, ma poi viene semplificato con il fattore 1/4 che viene
dall’elevazione al quadrato di v. Per questa simulazione il tempo di campionamento è stato
abbassato a 0.05s per evitare fenomeni di chattering.

Si osserva che minimizzando solo v il tracking della traiettoria peggiora di molto.

5.0.2 Cerchio, differential drive, minimizzando correzione su ω

Da (4.4) si ottiene che

ω2 = r2

d2 (ω2
r + ω2

l − 2ωrωl)
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(a) Traiettoria del robot con correzione (b) Input tracking +
MPC 1-step

(c) Input tracking +
MPC multistep

Figura 5.1 Simulazione 8: tracking di un arco di cerchio con errore iniziale con differential drive,
minimizzando la correzione sulla sola velocità lineare.

Basta quindi impostare

H = 2r2

d2

(
1 −1

−1 1

)
(5.2)

per minimizzare solo la velocità angolare del robot. Per MPC multistep H è una matrice
diagonale a blocchi di grandezza C, con ogni blocco come (5.2). Il 2 serve per tener conto del
fattore 1/2 nella formulazione di quadprog.

Per questa simulazione il tempo di campionamento è stato abbassato a 0.05s per evitare
fenomeni di chattering.

Si osserva che minimizzando solo ω l’errore iniziale viene recuperato prima, evitando la
sovraelongazione che si osservava in sezione 4.0.3.

5.1 Correzione sugli input di tracking
La struttura del controllore definita in figura 3.1 applica la correzione direttamente agli ingressi
del robot. È possibile modificare la struttura come in figura 5.3 per applicare la correzione agli
input di tracking prima della matrice di disaccoppiamento.

Con questa struttura si possono ottenere gli stessi risultati dei capitoli 3 e 4 impostando H
in maniera tale da minimizzare la correzione vista sugli input del robot

H =


T −1

i (θ) 0 · · · 0
0 T −1

i+1(θ) · · · 0
...

... · · ·
...

0 0 · · · T −1
i+C(θ)

 (5.3)

e cambiando i vincoli nella forma Ax ≤ b per esprimere i vincoli di saturazione.
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(a) Traiettoria del robot con correzione (b) Input tracking +
MPC 1-step

(c) Input tracking +
MPC multistep

Figura 5.2 Simulazione 9: tracking di un arco di cerchio con errore iniziale con differential drive,
minimizzando la correzione sulla sola velocità angolare.

+

+

Figura 5.3 Schema di controllo con azione correttiva su input di tracking

A =



T −1
i (θ) 0 · · · 0

−T −1
i (θ) 0 · · · 0
0 T −1

i+1(θ) · · · 0
0 −T −1

i+1(θ) · · · 0
...

... · · ·
...

0 0 · · · T −1
i+C(θ)

0 0 · · · −T −1
i+C(θ)


b =



(
vmax

ωmax

)
− T −1

i (θ)utrack
i(

vmax

ωmax

)
+ T −1

i (θ)utrack
i

...(
vmax

ωmax

)
− T −1

i+C(θ)utrack
i(

vmax

ωmax

)
+ T −1

i+C(θ)utrack
i



(5.4)

Ma soprattutto questa formulazione può essere usata per minimizzare in maniera isolata v e
ω nel caso dell’uniciclo, continuando comunque a far comparire tutte le variabili di decisione
(entrambe le componenti di ogni ucorr

i ) nella funzione di costo. Notando che
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(a) Traiettoria con correzione solo su (vcorr)2 (b) Traiettoria con correzione solo su (ωcorr)2

Figura 5.4 Simulazioni 9, 10: Inseguimento di un arco di cerchio con errore iniziale con uniciclo,
minimizzando la correzione sulla velocità lineare (a) e angolare (b)

v =
(
1 0

)(v
ω

)
=
(
1 0

)
T −1(θ)ucorr

ω =
(
1 0

)(v
ω

)
=
(
1 0

)
T −1(θ)ucorr

(5.5)

Per minimizzare (vcorr)2e (ωcorr)2si può impostare H (o un blocco di H) rispettivamente a

H = T −1(θ)T

(
1
0

)(
1 0

)
T −1(θ) (5.6)

per v ed a

H = T −1(θ)T

(
0
1

)(
0 1

)
T −1(θ) (5.7)

per ω. Sviluppi simili possono essere fatti per il robot differential drive, arrivando agli stessi
risultati delle sezioni 5.0.1 e 5.0.2.

Nel caso dell’uniciclo tuttavia non si apprezzano differenze significative nel minimizzare una
o l’altra componente della correzione, come riportato in figura 5.4.

In ultimo, questa struttura permette anche un ulteriore tipo di correzione. Infatti, se si
eseguisse il tracking del centro esatto del robot, applicare una correzione significherebbe modificare
direttamente ẋ e ẏ. Ponendo poi H pari alla matrice identità si starebbe minimizzando proprio
(ẋcorr)2 + (ẏcorr

i )2 = (vcorr
i )2. Tuttavia, dato che si sta eseguendo il tracking di un punto spostato

rispetto al centro del robot (come espresso in (2.3)), modificare direttamente l’input di tracking
modifica non solo vcorr

i ma anche parzialmente ωcorr
i . In effetti, data la forma degli ingressi di

tracking (2.3), ẋ2 + ẏ2 = v2 + b2ω2.
Ne risulta, per il differential drive, un comportamento vicino a quello visto in sezione 5.0.2,

con una variazione della traiettoria che evita la grande sovraelongazione che invece si vede in
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(a) Traiettoria del robot con correzione (b) Input tracking +
MPC 1-step

(c) Input tracking +
MPC multistep

Figura 5.5 Simulazione 10: tracking di un arco di cerchio con errore iniziale con differential drive, con
correzione sugli ingressi di tracking.

4.0.3. I risultati sono esposti in figura 5.5. Visto quanto appena detto, lo stesso risultato può
essere ottenuto con lo schema di controllo in figura 3.1 e impostando H come

H = 2 ·
[

r2

4

(
1 1
1 1

)
+ b2 r2

d2

(
1 −1

−1 1

)]
(5.8)

Tutte queste situazioni mettono il luce come il comportamento osservato nei capitoli 3 e 4
sia piuttosto peculiare e attribuile alla scelta della funzione di costo e come funzioni di costo
diverse portino a comportamenti molto diversi fra loro.

Inoltre, il fatto che con il robot uniciclo non si apprezzino differenze particolari dalla
minimizzazione di una sola delle componenti della correzione deriva dalla forma della regione
ammissibile: essendo un rettangolo, la scelta del valore per una variabile non vincola ulteriormente
l’altra. Nel caso del robot differential drive invece, essendo la regione ammissibile un rombo, la
scelta di una valore per una delle due variabili di decisione vincola il valore dell’altra, che ha
come conseguenza la notevole differenza fra le due traiettorie.

In tutte le simulazione si osserva comunque che MPC 1-step e MPC multistep producono gli
stessi ingressi. Questo è conseguenza della struttura del problema e in particolare dello step di
linearizzazione e dei vincoli, come illustrato in sezione 3.1.4.
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Capitolo 6

Conclusione

Il trajectory tracking è l’azione di inseguimento di una traiettoria con un robot. Tuttavia
alcune traiettorie possono far saturare gli attuatori del robot, rendendone impossibile il tracking
esatto. Questo avviene se la traiettoria richiede una velocità eccessiva per gli attuatori, presenta
curvature elevate oppure errori iniziali elevati fra la posizione del robot e la traiettoria.

Lo scopo di questo progetto era fare trajectory tracking con robot di tipo uniciclo e differential
drive, aggiungendo un termine generato da un controllore MPC-based per correggere l’azione di
tracking ed assicurare che lo sforzo di controllo rientrasse nei limiti di saturazione degli attuatori.
Il problema di ottimizzazione del controllore MPC-based è stato impostato per minimizzare la
correzione necessaria a far rientrare il controllo nei limiti di saturazione.

Il funzionamento del termine correttivo è stato verificato simulando in MATLAB l’insegui-
mento di diverse traiettoria con diverse condizioni iniziali. È stato trovato che il controllore
MPC-based riesce con successo a generare un’azione correttiva che non fa saturare gli attuatori,
tuttavia la scelta di minimizzare la correzione la porta a comportarsi come la saturazione stessa.
Ne risulta che gli ingressi corretti a monte della saturazione sono uguali a quelli non corretti
a valle della saturazione, sia per il robot uniciclo che per il robot differential drive. Inoltre, è
stato trovato che la formulazione del problema di ottimizzazione rende le variabili di decisio-
ne indipendenti fra loro, rendendo indifferente la lunghezza dell’orizzonte di predizione. Per
un’implementazione più computazionalmente efficiente ci si può quindi limitare ad un controllore
MPC 1-step.

È comunque importante notare che questi due fenomeni non si estendono, in generale, a
modelli di robot più complessi o a formulazioni con vincoli aggiuntivi. Ne è un esempio [2], che
usa la stessa funzione di costo usata in questo progetto ma introduce vincoli di stabilità del
sistema nella formulazione di MPC. Per un ulteriore esempio, si pensi ad un robot car-like per
cui si introduce un ulteriore vincolo sull’angolo di sterzo. In questo caso, la saturazione degli
ingressi violerebbe il vincolo, mentre l’uso di MPC troverebbe una soluzione diversa in grado di
soddisfarli tutti.

Nell’ultimo capitolo è stato visto come questo fenomeno sia inoltre dovuto alla funzione di
costo, e come funzioni di costo diverse portino a comportamenti anche molto diversi fra loro. In
particolare, è stato esplorato l’impatto sul tracking della minimizzazione di solo una componente
dell’azione correttiva. In sviluppi futuri di questo lavoro verranno provate formulazione diverse
della funzione di costo, che prendano in considerazione anche l’errore di tracking, ad esempio
minimizzandone la norma quadra, oltre che il termine correttivo stesso.
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