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1 Introduction

In control theory, stability analysis of nonlinear systems is done mainly through

Lyapunov functions (LFs), which offer a sufficient condition to prove the stability

(simple or asymptotic) of the system. Those functions are however, hard to find

in general and require onerous manual work [1]. Furthermore, being only sufficient

conditions, the inability to find a Lyapunov function does not entail instability of the

equilibrium of interest, and thus does not provide any extra information.

Recently, efforts have been made to learn Lyapunov functions using neural networks

(NNs). This report mainly follows on the work of [2]: their framework uses a NN to

find a controller and a Lyapunov function for the closed loop system, plus a falsifier

to ensure the NN actually satisfies the conditions for the function to be Lyapunov.

The neural network minimizes the Lyapunov Risk (Section 2) and uses tanh activation

functions to ensure that the resulting LF is smooth. The falsification step is formulated

as a δ-complete constraint satisfaction problem [3], ensuring that if no violation is found

in the domain of interest, the Lyapunov conditions are guaranteed to be satisfied.

This work is organized as follows: in section 2, the framework and the theory

behind it are explained; in section 3 experiments are carried out on different systems.

Finally, conclusions are drawn in section 4.
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2 Theory

2.1 Lyapunov stability

Consider an autonomous system

ẋ = f(x) (1)

with f : D ⊂ Rn → Rn locally Lipschitz, and with the origin x = 0 an equilibrium,

i.e. such that f(0) = 0.

Definition 2.1. The equilibrium x = 0 for (1) is:

� stable: if ∀ϵ > 0, ∃δ > 0 such that

||x(0)|| < δ =⇒ ||x(t)|| < ϵ,∀t ≥ 0

� asymptotically stable: if it is stable and δ is such that

||x(0)|| < δ =⇒ lim
t→∞

x(t) = 0

� unstable: if it is not stable

Theorem 1. Let x = 0 be an equilibrium for (1) and D ⊂ Rn a subset of the domain

containing x = 0. Let V : D → R a continously differentiable function such that

V (0) = 0 and V (x) > 0 in D \ {0}

V̇ (x) ≤ 0 in D

then, x=0 is stable.

Furthermore, if

V̇ (x) < 0 in D

x = 0 is asymptotically stable

where V̇ (x) = LfV (x) = ∇T
xV (x)f(x) is the Lie derivative along f of V (x). Note

also that the form (1) includes the case of general affine nonlinear systems of the form

ẋ = f(x) + g(x)u (2)

under state feedback u = α(x).
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2.2 Neural network structure

The neural network is a multilayer feedforward neural network. Notably, ReLU functions

cannot be used since the falsification step needs to check conditions on the Lie derivative

as well, which must exist. Non-smooth functions like the ReLU do not ensure the

existence of the lie derivative, thus tanh or sigmoid functions should be used. Throughout

this work, the tanh function is used as activation function.

The neural network is actually composed of two networks. The first computes

a control, in the form u = Kx, the second computes a Lyapunov function for the

closed loop system. Since stochastic gradient descent can get stuck in local minima

(especially for small networks like the one at hand), the weights for the control are

initialized to the LQR solution for the system, if any.

The loss function is built so to estimate the ”degree of violation” of the Lyapunov

conditions for asymptotic stability, which are:

� V (x) is positive definite

� LfV (x) is negative definite

� both functions are zero at the origin

Note with θ and u the neural network parameters for the Lyapunov function and

control outputs, respectively. Denote with Vθ(x) the Lyapunov function encoded by the

NN, which depends on the parameters θ of the network itself; with fu the closed-loop

system depending on the control u learnt by the neural network and denote with

LfuVθ(x) the Lie derivative of Vθ(x) w.r.t fu. Then, the control design problem can be

written as a minimization of the minimax function:

inf
θ,u

sup
x∈D

(
max(0,−Vθ(x)) + max(0, LfuVθ(x)) + V 2

θ (0)
)

(3)

To guarantee stability, these conditions need to be satisfied over all states in D.

The inner maximization is taken care of by the falsifier (section 2.3), while for the

learning step, we define the following:

Definition 2.2. (Lyapunov Risk) Consider a candidate Lyapunov function Vθ for the

closed loop system of the form (1). The Lyapunov risk is defined as

Lρ(θ, u) = Ex∼ρ(D)

(
max(0,−Vθ(x)) + max(0, LfuVθ(x)) + V 2

θ (0)
)
, (4)

where x is a random variable over the state space of the system, with distribution ρ.

In practice, we work with the Monte Carlo estimate of , that is the empirical Lyapunov

risk, defined as

Lρ(θ, u) =
1

N

N∑
i=1

(
max(0,−Vθ(xi)) + max(0, LfuVθ(xi))

)
+ V 2

θ (0), (5)
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where xi are the samples of the state vectors according to ρ(D).
The empirical Lyapunov risk is an unbiased estimator of the Lyapunov risk function.

Also, Lρ is positive semidefinite, and any (θ, u) that corresponds to a true Lyapunov

function satisfies L(θ, u) = 0, which means that Lyapunov functions define global

minimizers of the Lyapunov risk function.

2.3 Falsifier

In the falsification step, the Lyapunov falsification is written as the following first-order

logic formula over the reals.

Φϵ(x) :=
( n∑

i=1

x2
i ≥ ϵ

)
∧
(
V (x) ≤ 0 ∨∇fuV (x) ≥ 0

)
, (6)

where ϵ ∈ Q+ is a small positive constant which bounds the tolerable numerical

error and where x is bounded in the state space D of the system. The constant ϵ

is specifically chosen to control numerical sensitivity near the origin, and in particular

to avoid problems like arithmetic underflow. Its value should be chosen to be orders

of magnitude smaller than the range of the state variables, i.e.
√
ϵ≪ min(1, ||D||2).

The solution of the falsification constraint Φϵ(x) requires global minimization of

highly nonconvex functions (since the Lie derivatives are involved), which is a NP-hard

task. In this work, falsification constraints are solved using the dReal [4] SMT (Satisfiability

Modulo Theory) solver. To certify the Lyapunov conditions, the falsifier must always

report solutions if there are any. In this sense, dReal satisfies the δ-completeness

property [3].

This ultimately means that, chosen a constant δ ∈ Q+, δ ≪ ϵ if the falsifier returns

no solution for the δ-relaxed problem (i.e. it is not satisfiable), no solution exists for

the original problem. If no states violating the constraint are found, the candidate is

a valid Lyapunov function. On the other hand, if some states are found such that the

Lyapunov constraint is violated, they are added to the dataset as counter example and

the training of the network continues.

2.4 Tuning the region of attraction

With the loss function (4) an extra term can be added so to try increase the region

of attraction of the equilibrium by adding a term of the form −αVθ(xi) to the loss

function (5), where α a tunable hyperparameter.

2.5 Algorithm

The resulting algorithm for training formulated by [2] is the following:
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Algorithm: Neural Lyapunov Control

function LEARNING(X,f,ulqr):
α learning rate

Din input dimension (# state variables of X)

output dimension is 1

u← ulqr

Vθ(x), u(x)← NNθ,u(x)

LfuVθ(x)←
∑Din

i=1
∂V (x)
∂xi

fu,i(x)

Compute Lyapunov risk L(θ, u)

θ ← θ + α∇θL(θ, u)

u← u+ α∇uL(θ, u)

return Vθ, u;

endfunction

function FALSIFICATION(f,u,Vθ, ϵ, δ):
Encode conditions 6

Run SMT solver with ϵ, δ to verify conditions

return satisfiability, counterexamples

endfunction

function MAIN(f,ulqr, ϵ, δ,D):
X ← D

while satisfiable do
Vθ,u(x)← X LEARNING(X, f, ulqr) satisfiable, CE ←
FALSIFICATION(f, u, Vθ, ϵ, δ X ← X ∪ CE

end

endfunction
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3 Experiments

Four experiments have been carried out: the first considers a simple integrator, to prove

the approach works for the simplest linear system; then, three nonlinear systems are

tested: an inverted pendulum, a cart-pole, and the pendubot.

For all the examples where the LQR solution can be computed, the values of Q

and R are set to the identity matrix of the appropriate dimension and the controller

is computed by solution of the algebraic Riccati equation, using the function lqr()

in MATLAB. When possible, Lyapunov functions and regions of attractions (ROAs)

are plotted and discussed. All experiments also include a simulation of the system

comparing LQR and the controller found by the Neural Network.

All tests are run on a desktop computer with an AMD Ryzen 7 3700X CPU, 64GB

of DDR4 RAM and a NVIDIA RTX3060 GPU with 12GB of VRAM. Neural network

training is always run on the GPU, while falsification is always run on the CPU. Since

falsification is the step that takes the most time for more complex systems like the

cart-pole and the pendubot, falsification is run in parallel on 12 of the CPU’s 16

threads, which sensibly reduces computation times.

For all the tests, the neural network has a simple multilayer feedforward structure,

with the input layer having as many nodes as components of the system in question, one

hidden linear layer (6 nodes for integrator and inverted pendulum, 10 for cart-pole and

pendubot) with tanh activation function as one linear output node with no activation

function. A falsification is performed every 20 iterations of NN training, and counter

examples added to the training dataset. To avoid getting stuck in a local minima,

every 10000 iterations the network is initialized again with random weights, but the

dataset of found counterexamples is kept. A test is considered failed if no solution is

found after 5 re-initializations and the loss value being approximately zero.

The output node differs from the structure used in the code [5] released by the

authors of [2], but is more in line with conventional NN implementations. Other

improvements done in this work include a more extensive use of PyTorch’s tensor

type to optimize computations, and corrections to a computation error in the Lie

derivative for the loss function committed in [5]. The latter in particular has been

completely replaced by PyTorch’s autograd functionality and required the removal of

the activation function from the output node. Before doing so, the loss would quickly

approach zero but the falsifier would always find a counter example.

Finally, since the falsification is a NP-hard problem, choosing a valid region that is

too large might make the problem practically unsolvable. Relaxing the conditions by

setting appropriate values for ϵ and δ may help in finding a solution faster. Great care

should still be used in respecting the condition δ ≪ ϵ, as failure to do so might result

in a function that is deemed valid by the falsifier but actually leads to a controller that

does not stabilize the system.
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Figure 1: Integrator.

Table 1 compares execution times for the four tests.

3.1 Integrator

The first test is a simple integrator

ẋ = u (7)

The system being so simple allows for the valid region to be quite large, while still

taking reasonable time to solve the falsification problem.

The LQR solution is simply u = −x, while the NN finds a control u =. The

learned Lyapunov function and its Lie derivative, as well as the comparison of the two

controllers, is shown in Figure 1.

The Lyapunov function learn by the network is

V (x) = 0.726 tanh(0.00107x+ 1.55)− 0.385 tanh(0.51x+ 1.56)

− 0.129 tanh(0.282x+ 0.307) + 0.236 tanh(0.404x− 0.761)

+ 0.613 tanh(0.466x− 1.72)− 0.365 tanh(0.465x+ 1.84) + 0.868

3.2 Inverted Pendulum

The state variables are the angular position x1 = θ and velocity x2 = θ̇. The state

space model is:

ẋ1 = x2

ẋ2 =
1

ml2
(mgl sin θ − bx2 + u)

(8)

with m = 0.1 kg, l = 0.5 m, b = 0.1 kg/ms.

To compute the LQR solution, the system is linearized around the equilibrium

x = 0:
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Figure 2: Evolution of the inverted pendulum system under the two controllers

A =

[
0 1.0000

19.6200 −2.6667

]
, B =

[
0

26.6667

]
The solution to the algebraic Riccati equation yields a control u = −2.3299x1 −

1.3781x2. The neural network instead learns a control of the form u = −7.226736x1−
14.6675415x2.

The equilibria for the closed loop system are all the states such thatẋ2 = 0

mgl sin x1 + k1x1 = 0,

which, for this particular choice of m, l and k1, make the origin the only equilibrium

of the closed loop system with both controllers.

The Lyapunov function learnt by the neural network is

V (θ, θ̇) = 0.184 tanh(0.749θ + 1.06θ̇ − 0.122)− 0.154 tanh(1.1θ + 1.48θ̇ + 0.533)

− 0.166 tanh(0.606θ − 0.37θ̇ + 1.17)− 0.514 tanh(0.196θ + 0.286θ̇ + 0.689)

− 0.407 tanh(0.0164θ − 0.368θ̇ + 0.98)− 0.377 tanh(0.0719θ̇ − 0.596θ + 1.1) + 1.23

3.2.1 Region of attraction

It’s natural to say that if the origin is locally asymptotically stable and it is the only

equilibrium of the system, then the origin must be globally asymptotically stable. It’s

still interesting to see how the shape of the region of attraction for the equilibrium

changes when comparing LQR and NN. Regions of attraction can be estimated by

looking at the level sets of the Lyapunov function, and checking when those remain

closed sets, although these are in general conservative estimates [1]. The plots in figure
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3c are obtained by manually selecting the largest level set inside the valid region for

each Lyapunov function.

(a) Lyapunov function learnt by the

NN.

(b) Lie derivative. (c) ROA comparison

with phase plot.

Figure 3: Inverted pendulum

3.3 Cart-pole

The equations for the cart-pole are taken from [6], which extends the work of [2] to

discrete time systems, though using a slightly different methodology. A change of

coordinate is performed such that the angle is θ = 0 when the pole points upwards.

ẍ =
u+mp sin θ(lθ̇

2 + g cos θ)

mc +mp sin
2 θ

θ̈ = −u cos θ +mplθ̇
2 cos θ sin θ + (mc +mp)g sin θ

l(mc +mp sin
2 θ)

(9)

with mc = 1.0kg the mass of the cart, mp = 0.1kg the mass of the pole and l = 1m

the length of the pole. The state is q =
[
x θ ẋ θ̇

]T
, with x and θ the position of

the cart and the angle w.r.t the vertical axis.

By linearizing around the origin in the new coordinates, one obtains

A =


0 0 1.0000 0

0 0 0 1.0000

0 −0.9810 0 0

0 10.7910 0 0

 , B =


0

0

1

−1

 (10)

with a LQR solution u = x+ 34.3894θ + 2.4106ẋ+ 10.7039θ̇.

In this case, the NN failed to learn a Lyapunov function within the limits imposed

for training. Notably, the same result is found by [6]. The control found by the

NN before training stopped is u = 0.02846x + 27.7164θ + 6.3134ẋ + 13.7256θ̇, and

comparison with LQR is shown in Figure 4. Compared with LQR, the intermediate

solution found by the NN has a much slower convergence of the x coordinate, which

takes about 900s to reach the origin.
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Figure 4: Cart-pole system evolution.

3.4 Pendubot

The pendubot is an underactuated double pendulum, with actuation only on the first

link. The dynamic model for the pendubot can be obtained starting from the dynamic

model of a 2R planar robot in cartesian space:

M(q)q̈ + c(q, q̇) + g(q) = u, (11)

with

M(q) =

[
a1 + 2a2c2 a3 + a2c2

a3 + a2c2 a3

]
, c(q, q̇) =

[
−a2s2(q̇22 + 2q̇1q̇2)

a2s2q̇1
2

]
, g(q) =

[
a4c1 + a5c12

a5c12,

]

where ai are the dynamic parameters defined as in [7], and the shorthand notation

si = sin(qi), ci = cos(qi), sij = sin(qi + qj), cij = cos(qi + qj) is used.

With the change of coordinates θ′1 = θ1−π
2
, one moves the origin to the configuration

where both links point upwards. This only changes the gravity terms g(q) to be:

g(q) =

[
a4s1 + a5s12

a5s12

]
.

Since the pendubot is not controllable in the considered configuration, the weights

for the control are all initialized to zero. In this case too the NN failed to find a

solution within the imposed time limits. The effect of the last control computed by

the NN is shown in Figure 5.

3.5 Comparison of the four tests

Table 1 shows a comparison of the training procedure between the four tests. As

mentioned before, NN training always makes use of the GPU, while falsification always

runs on the CPU using 12/16 threads available. The table is meant to only give a

qualitative understanding of the order of magnitudes of the times required to compute
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Figure 5: Pendubot system evolution.

a solution of each system, and different executions will have different results due to

the nondeterminism in the random initialization in both PyTorch and dReal. For

the cart-pole and pendubot, the framework could not find a valid solution within

the training limits. Both tests ended after 5 re-initializations, each with 10000 steps

of NN training and falsification every 20 and a loss function value of around 2.5e-4.

While in both failed tests no Lyapunov function could be found to verify it, the control

computed at the end of training managed the stabilize the respective systems, as shown

in Figures 4 and 5.

Test ϵ δ Valid

region

UB

Training

iterations

Training

time [s]

Verification

time [s]

Valid?

Integrator 0.1 0.01 10 220 15.25 0.02 Yes

Inverted

pendulum

0.5 0.01 3.5 2560 18.48 8.08 Yes

Cart-pole 0.02 0.001 0.1 50000 900 350 No

Pendubot 0.02 0.001 0.05 50000 790 95 No

Table 1: Tests comparison
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4 Conclusions

This report follows on the work of [2], which introduces a framework for learning a

control and valid Lyapunov functions for the closed loop system via neural networks,

ensuring Lyapunov stability conditions are verified with a SMT solver. The framework

limits itself to controls that are linear in the state of the system, and thus limited

to a given region of attraction, which can however be maximized with appropriate

terms in the loss function for the training of the neural network. This report tests

the approach on four different systems: one linear and three nonlinear systems, two

of which underactuated. While the framework performs well on simple systems, it

fails to find valid control policies for more complex systems like the cart-pole and

the pendubot. Future work may consider larger networks and nonlinear controls, but

the main limitation of the method remains the falsification step, which is a NP-hard

problem that becomes increasingly difficult to solve in the dimension of the valid region,

which is also a hyperparameter that requires tuning to obtain a valid solution.
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