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Introduction

• Stability analysis for nonlinear systems is done 
mainly through Lyapunov functions

• Hard to find in general, lots of manual work
• Only sufficient conditions

• Idea: Use NN to learn control and Lyapunov 
function for the closed loop system
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Introduction

• Problem: NN can only approximate functions 
depending on loss

• The NN might not represent a Lyapunov function
• Use a constraint solver to verify Lyapunov 

conditions
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NN: structure

• Use another neural network to learn a control 

u = Kx 
• Use a multilayer feedforward neural network to 

learn a candidate LF, V(x) 
• Use tanh activation functions to ensure 

smoothness of V(x) 
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Consider a system              , with f: Rn→Rn locally 
Lipschitz and with an equilibrium at the origin. 
Consider a continously differentiable function V: D→R 

If V(x) is positive definite and        is negative 
semidefinite, the origin is stable. If         is negative 
definite the origin is asymptotically stable

Recap: Lyapunov stability conditions
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NN: loss function

• Use a loss function to minimize the “degree of 
violation” of the Lyapunov conditions, i.e. 
Lyapunov Risk
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Falsifier

• The falsifier uses a contraint solver to certify the 
Lyapunov conditions are respected

• We look for states x  that violate Lyapunov 
conditions

• ϵ upper bounds the tolerable numerical error
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Falsifier - δ−completeness

• The solver is δ-complete : it solves a relaxation of 
the problem to account for numerical precision

• If the relaxation is unsatisfiable, so is the original 
problem
– i.e. if no states violating the contraints are found, the 

function is Lyapunov
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Region of attraction tuning

• The framework only takes into consideration 
controls that are linear in the state

• These limit the region of attraction
• Try to enlarge the region of attraction by adding 

appropriate terms in the loss function
• α is a hyperparameter
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Experiments

Four experiments:
• Integrator  (linear)
• Inverted pendulum (nonlinear)
• Cart-Pole (nonlinear, underactuated)
• Pendubot (nonlinear, underactuated)
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Experiments - setup

• NN training always on GPU

• Falsification always on CPU (12/16 threads)

• One falsification every 20 iteration of NN training

• Counterexamples are added to training dataset

• Control weights init. To LQR solution, LF weights random

• Random re-initialization after 10000 iterations of NN training, 
with loss roughly zero

• Training failed if no solution after 5 re-initializations
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Experiments (1): Integrator

• A solution is found quickly, with a large valid region
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Experiments (2): Inverted pendulum

• A solution is found

• Origin is globally asymptotically stable 
with both LQR and NN controllers

• Level sets of NN Lyapunov function 
larger that LQR inside valid region
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Experiments (3): Cart-pole

• No solution is found within 
imposed time limits

• Controller computed at the 
end of training stabilizes the 
system

– But no LF to certify it
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Experiments (4): Pendubot

• No solution is found within 
imposed time limits

• Controller computed at the 
end of training stabilizes the 
system

– But no LF to certify it
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Experiments: Comparison
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Conclusions

• Approach works for simple systems and can find valid Lyapunov functions 
with large ROA

– Cannot find solutions for slightly more complex systems

• Falsification is NP-hard, takes very long time for slightly more complex 
systems

– Difficulty also grows with the dimension of the valid region

– With a too large valid region falsification might take days for a single 
step

• Controls only linear in the state might be a limitation

– Non linear controls make falsification even harder

• Larger networks might help

– Again, falsification becomes even harder
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Thank you for your attention!
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