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Introduction

* Stability analysis for nonlinear systems is done
mainly through Lyapunov functions

* Hard to find in general, lots of manual work
* Only sufficient conditions

* |dea: Use NN to learn control and Lyapunov
function for the closed loop system
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Introduction

* Problem: NN can only approximate functions
depending on loss

* The NN might not represent a Lyapunov function

* Use a constraint solver to verify Lyapunov
conditions
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NN: structure

* Use another neural network to learn a control
u = Kx

* Use a multilayer feedforward neural network to
learn a candidate LF, V(x)

* Use tanh activation functions to ensure
smoothness of V(X)

Neural Lyapunov Control 01/06/26 Pagina 4




Recap: Lyapunov stability conditions

Consider a system & = f(z), with f: R"~>R" locally
Lipschitz and with an equilibrium at the origin.
Consider a continously differentiable function V: D-R

If V(X) is positive definite and | IS negative
semidefinite, the origin is stablgzlf IS negative
definite the origin is asymptotically Btable
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NN: loss function

* Use aloss function to minimize the “degree of
violation” of the Lyapunov conditions, I.e.
Lyapunov Risk

Z (max (0, —Vp(z;)) + maX(O,quVg(:Ei))) + V#(0)
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Falsifier

* The falsifier uses a contraint solver to certify the
Lyapunov conditions are respected

o (1) = (iﬁ > e) A (V(:z:) <OVV, V(z)> o)

* We look for states x that violate Lyapunov
conditions

* € upper bounds the tolerable numerical error
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Falsifier - 6—completeness

* The solver is 6-complete : it solves a relaxation of
the problem to account for numerical precision

* |f the relaxation is unsatisfiable, so is the original
problem

— l.e. if no states violating the contraints are found, the
function is Lyapunov
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Region of attraction tuning

* The framework only takes into consideration
controls that are linear In the state

* These limit the region of attraction

* Try to enlarge the region of attraction by adding
appropriate terms in the loss function —a/Vy(x;)

* ais a hyperparameter
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Experiments

Four experiments:

* Integrator (linear)

* Inverted pendulum (nonlinear)

* Cart-Pole (nonlinear, underactuated)
* Pendubot (nonlinear, underactuated)
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Experiments - setup

* NN training always on GPU

* Falsification always on CPU (12/16 threads)

* One falsification every 20 iteration of NN training

* Counterexamples are added to training dataset

* Control weights init. To LQR solution, LF weights random

* Random re-initialization after 10000 iterations of NN training,
with loss roughly zero

* Training failed if no solution after 5 re-initializations
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Experiments (1): Integrator

* A solution is found quickly, with a large valid region
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Experiments (2): Inverted pendulum
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Experiments (3): Cart-pole
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Experiments (4): Pendubot
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Experiments: Comparison

Test e | a Valid | Training Training Verification | Valid?
region | iterations | time [s] time [s]
UB
Integrator | (.1 | 0.01 10 220 15.25 .02 Yes
[nverted (0.5 | 0.01 3.5 256() 18.48 8.08 Yes
pendulum
Cart-pole | 0.02 | 0.001 (0.1 50000 900 350 No
Pendubot | 0.02 | 0.001 0.05 S0000 790 95 No
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Conclusions

* Approach works for simple systems and can find valid Lyapunov functions
with large ROA

— Cannot find solutions for slightly more complex systems

* Falsification is NP-hard, takes very long time for slightly more complex
systems

— Difficulty also grows with the dimension of the valid region

— With a too large valid region falsification might take days for a single
step

e Controls only linear in the state might be a limitation

— Non linear controls make falsification even harder
* Larger networks might help

— Again, falsification becomes even harder
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Thank you for your attention!
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