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1 Transient in residual dynamics

The residual dynamics

r = Ko

(
p(t)− p(0)−

∫ t

0

(τm − β(q, q̇)− r)dt
)

(1)

is discretized. Both the backwards Euler method and the Tustin/bilinear method are tested. The discretiza-
tion results in a small transient in the residual dynamics. It is expected for the peaks in the transient to
have smaller amplitude when using the bilinear method.

All simulations are done with Ko = 10 to ensure the dynamics stays within the stability limit imposed
by the discretization. A feedback linearization scheme is used for control with KP = KD = 200, like in the
report. The robot system is asymptotically stable and reaches steady state in about 5s. Both the control
and the residual dynamics are computed in discrete time.

The simulations start from a rest configuration of q0,i =
π
2 (not an equilibrium) and perform a regulation

task to qd =
[
0 π 0 − π

2 π π π
]T

(not an equilibrium).
All simulations are in the nominal, collision free case.

1.1 Using approximate derivative vs factorization of S(q, q̇)

The term β(q, q̇) in (1) is
β(q, q̇) = n(q, q̇)− Ṁ(q)q̇ (2)

Where Ṁ(q) can either be approximated as

Ṁk(q) =
Mk(q)−Mk−1(q)

Ts
(3)

or computed exactly via a factorization of S(q, q̇), resulting in

β(q, q̇) = g(q)− ST (q, q̇)q̇. (4)

Ideally, using (4) should provide smaller transients as it is an exact computation of the term Ṁ(q).
Figures 1 and 2 show the behaviour in the two cases, with increasingly sampling times. It can be noted

that in both cases, the amplitude of the peaks increases as the sampling time does, even resulting in some
oscillations at Ts = 8s.

It can also be noted that there are no particular differences in transient behaviour when using (3) or
(4), suggesting that (3) is a good approximation of the term Ṁ(q). The goodness of the approximation is
because of the numerical conditioning of the inertia matrix: many elements much smaller than 1 and the
inertia matrix is often very close to singularity. A less ”singular” model would likely show more differences
between using (3) and (4).
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(a) Ts=1mS
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(b) Ts=2mS
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(c) Ts=5mS
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(d) Ts=8mS

Figure 1: Residual dynamics with different sampling times, using approximate derivative (3)
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(a) Ts=1mS
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(b) Ts=2mS
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(c) Ts=5mS
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(d) Ts=8mS

Figure 2: Residual dynamics with different sampling times, using S(q, q̇) factorization (4)
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(a) Using approximate derivative, Ts=1mS
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(b) Using factorization S(q, q̇), Ts=1mS

Figure 3: Comparison between approximate derivative and S(q, q̇). No notable differences between the two

2 Euler integration vs bilinear integration

With no particular differences between the two approaches, it is safe to deduce that the transient behaviour
is due to the discretization of the integral term

∫ t

0
(τm − β(q, q̇)− r)dt

Hence, using a more precise integration method, like the Tustin/bilinear method, should result in better
transient behaviour. This is in fact the case, as shown in Figure 4.
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(a) Approximate derivative, Ts=1mS, backwards Eu-
ler method
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(b) Approximate derivative, Ts=1mS, Tustin method

Figure 4: Comparison between backwards Euler and Tustin method
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3 Sources of integration error

The two terms responsible for most of the integration error are τm and q̇. When sharp and sudden changes
happen in this two terms, the discrete integration methods fail to approximate the functions well, and the
integration error makes the residual dynamics behave as if a collision happened.

In the report, this error is ”concentrated” at the start of the simulation, as if the residual dynamics has a
transient. In reality, this is due to a sudden change in τm and q̇: in the regulation task, the robot starts from
rest and has to move to a different joint configuration. At the start of the simulation, there is a large error
between the current and the desired configuration, resulting in a high control effort, further accentuated by
high gains in the controller.

For the tracking task, there is some error both in position and velocity, which again requires high control
effort and a sharp change in both control effort and joint velocity to be recovered.

This is justified by the following figures. In Figure 5 a regulation tasks starts at t = 0s from q0,i =
π
2 and

at rest towards qd =
[
0 π 0 − π

2 π π π
]T

. At t = 5s however, the desired configuration changes back to q0.
The initial high control effort results in the transient-like behaviour already explored, but then the change
in desired configuration at t = 5s requires a sharp change in control effort (discontinuous by looking at the
plots, which can indeed happen since the control is computed in discrete time) and results in a spike in the
values of the residuals, as if a collision happened.

Figure 6 features a trajectory tracking task with

qd,i =
π

2
cos 4t

q̇d,i = −2π sin 4t

q̈d,i = −8π cos 4t

with no initial position and velocity error. The transient-like behaviour is absent here, but there is a
spike in the residuals values each time the sine wave changes direction, as already featured in the report.

Finally, Figure 7 features the same regulation task as the report, now done instead by tracking a rest-to-
rest trajectory described by a quintic polynomial in joint space. Here, no transient is present at all, but a
spike is present when the control effort changes rapidly (eg. joints 7).

All three simulations used the feedback linearization scheme used in the report, with KP = KD = 50,
the S(q, q̇) factorization in 4 and Tustin’s method for integration, with 1ms sampling time.

5



t [s]
0 2 4 6 8 10

q
j [

ra
d

]

-2

-1

0

1

2

3

4
q
1

q
2

q
3

q
4

q
5

q
6

q
7

(a) Joints

t [s]
0 2 4 6 8 10

r j

-0.15

-0.1

-0.05

0

0.05

0.1
r
1

r
2

r
3

r
4

r
5

r
6

r
7

(b) Residuals
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(c) Control effort

Figure 5: Double regulation task
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(a) Joints
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(b) Residuals
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(c) Control effort

Figure 6: Trajectory tracking task with no initial error
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(a) Joints

t [s]
0 1 2 3 4 5

r j

-0.01

-0.005

0

0.005

0.01

0.015

0.02
r
1

r
2

r
3

r
4

r
5

r
6

r
7

(b) Residuals
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(c) Control effort

Figure 7: Regulation task by tracking a quintic polynomial
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